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Abstract

Scale effects in dry friction at microscale and the coefficients of friction due to adhesion force and two- and three-body

deformations are considered. A rub-impact micro-rotor model with scaling nonlinear rub-impact force is presented and the

nonlinear dynamic characteristics of the system in micro-electro-mechanical systems (MEMS) are investigated when the

rotating speed, imbalance, damping coefficient, scale length and fractal dimension are regarded as the control parameters.

Effects of scale length, fractal dimension, velocity-dependent impact factor and contact form on the coefficients of dry

friction are investigated and discussed, and used to study the nonlinear behavior of rub-related vibrations with a large

number of numerical simulations. The effects of rotating speed, imbalance, damping coefficient, and friction coefficient on

the micro-rotor system responses are studied. It is indicated that the rub-impact micro-rotor system with the scale effects in

friction alternates among the periodic, quasi-periodic and chaotic motions as the system parameters change. The results

can be effectively used to diagnose the rub-impact fault, reduce the failure and improve the characteristics of a micro-rotor

system, and optimize the design of micro-rotating machinery in MEMS.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Since the possible designs for electrostatic micromotors using technology derived from IC manufacturing
processes was first discussed by Trimmer and Gabriel [1] in 1987 and the term ‘‘Power MEMS’’ was first
suggested by Epstein et al. [2] in 1996 to describe microsystems which generated power or pumped heat, many
micro-rotating machinery have been developed using silicon micromachining and other micro-electro-
mechanical systems (MEMS) fabrications, including electrostatic micromotor, electromagnetic micromotor,
micro-gas turbine engine, micro-rocket engine, micro-compressor and MEMS-based turbocharger, etc.

Micro-rotating machinery will be used in our future society for a wide range of energy conversion
applications, electric power, mechanical power, fluid pumping, propulsion, ventilation and cooling included.
However, there are many dynamic phenomena and nonlinear problems that can be met for micro-rotating
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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machinery in MEMS. At the rotating speed of more than a million rev/min to achieve efficiency targets, the
‘‘dry rubbing’’ phenomenon would lead to an unacceptably high drag and short service life [3]. Moreover, for
micro-fabricated rotors, such balancing techniques have not yet been studied and developed [4]. Rotor
imbalances are mainly contributed to the misalignment of the journal bearing and the DRIE etch non-
uniformity [4,5]. It is expected that the imbalance is sufficient to force the rotor into solid contact with the
stator when the maximum peak response near the natural frequency increases with the imbalance [4,5]. Rotor
imbalance precludes performance of high-speed rotating machinery, promotes instability, reduces the range of
stable operation, and then limits the maximum operational speed [5]. The clearance between the rotor and the
bearing pin is so small that the rotor is intended to contact with the bearing pin when the motor is operating
[6]. If the peak excursion exceeds the bearing clearance, the rotor would contact the wall [7].

Contact and friction affect the operation of many rotating machinery in MEMS, as well as the basic
activities in nature. Many researches on analyzing [4,6,7] and simulating [8] the rotor dynamics in micro-
rotating machinery have been done during the past two decades. The first experimental prediction of dynamic
friction comes from the work on micromotor dynamics by Tai and Muller [9]. Beerschwinger et al. [10]
successfully applied finite element analysis (FEA) to simulate a variable capacitance (VC) electrostatic
micromotor, and calculated out the coefficient of friction. Epstein [7] gave two rotor dynamic design
considerations, i.e. traversing the critical frequency and ensuring that the frequency for the onset of instability
is above the operating range. In our previous works [11–14], contact characteristics, friction and wear of the
rotor and bearing hub of micromotors have been studied, a linear sliding wear model with ratcheting effects
has proposed to describe the wearing process and a simplified mathematical method has presented to simulate
the wear and friction of the rotor bushing sliding on the ground plane in micromotors, and the reliability of
the electrostatic micromotors has been reviewed and discussed. It can be concluded that the micro-rotor
dynamics are underdamped but insufficient to develop a detailed model for the full dynamic behavior.

Rub-impact phenomenon is one of the malfunctions occurring often in rotating machinery and a rotor
system with a fault is generally a complex nonlinear vibration system. However, conventional friction models
lack characteristic length parameters, which would be responsible for scale effects. Researchers have recently
investigated the scale effects in friction [15–19]. Hurtado and Kim [15] presented a micromechanical
dislocation model (HK) of frictional slip between two asperities involved numerous parameters for single
asperity contacts, but they did not propose a simple scaling law. Adams et al. [16] further extended their model
for the behavior of the friction stress over a wide range of contact areas, including nanoscale and microscale
contacts. They developed a multi-asperity model for contact and friction by incorporating the adhesion
contact model of Maugis and the scale-dependent HK friction model into a statistical model with a Gaussian
distribution of asperity summits. Furthermore, Adams and Muftu [20] presented a new scale-dependent
contact and friction model to investigate three effects of Weibull distribution, non-constant radii of curvature
of the asperity and non-contact asperities on contact and friction. The results showed that positive/negative
skew decreases/increases the coefficient of friction and the coefficient of friction increases/decreases for radii of
curvature that increase/decrease with height. Bhushan and Nosonovsky [17–19] presented a model for
adhesional friction based on strain-gradient plasticity and dislocation-assisted sliding, developed a
comprehensive model considered the scale effects on two- and three-body components of friction, and
incorporated an empirical rule for the scale dependence of surface roughness parameters and a fractal
description of the rough surface topography. A comprehensive friction model were developed by Tambe and
Bhushan [21] to explain the velocity dependence of nanoscale friction over a wide range of velocities between
1 mms�1and 10mm s�1 on large scan lengths of 2 and 25 mm, considering the contributions of adhesion at the
tip–sample interface, high impact velocity-related deformation at the contact asperities and atomic scale
stick–slip.

A comprehensive investigation on the dynamic characteristics is of great importance to establish a reliable
diagnosis system for micro-rotating machinery in MEMS. Due to needs for high speed and high efficiency in
micro-rotating machinery, the clearance between the rotor and stator becomes smaller and smaller. There
always exists the rotor imbalance contributed to the misalignment of the journal bearing and the DRIE etch
non-uniformity. As a result, the rubbing phenomenon is one of the main problems in micro-rotating
machinery. To make a profound understanding of the dynamic characteristics and malfunction faults of the
micro-rotor system in MEMS, this study extends our previous work [22] and presents a general model of a
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rub-impact micro-rotor system with the scaling effects in friction and analyzes its nonlinear dynamic
characteristics using modern nonlinear dynamics and rotor dynamics theories. The phenomena and dynamic
behavior, combining with other features such as bifurcation diagram, Poincaré maps, axes contrails, phase
plane portraits and time histories, can make diagnosis much simpler within these limited types.

2. Mathematical model

2.1. Scale-dependent friction model

Friction force (F) is a tangential force resisting the relative motion of two surfaces, which are pressed against
each other with a normal force (P). The dry friction between two bodies developed by Amontons and
Coulomb can be expressed by defining the coefficient of friction m as

m ¼
F

P
. (1)

From the adhesion and deformation model of friction, the total friction force equals to the force needed to
shear adhered junctions and the force needed to supply the energy of deformation, and the coefficient of dry
friction m can be given by a sum of the adhesion component ma and the deformation component md [17,23]. The
deformation component includes the asperity summit deformation component mds and the particle
deformation component mdp due to the wear particles. Therefore, the total coefficient of friction can be
written as

m ¼ ma þ mds þ mdp. (2)

All real surfaces are rough and the contact and friction between two surfaces is carried by the asperities on
the surfaces. For two rough surfaces in contact, the contact can be simplified by considering a rough surface
with composite roughness parameters in contact with a smooth surface [24]. However, models to predict the
friction force in a multi-asperity contact are relatively few. The classical microcontact GW model and more
comprehensive models had been used to study the contact and friction between a single rough surface and a
smooth one [24]. When multiple-asperity comes into contact, the scale dependence of surface roughness is a
factor contributed to the scale dependence of the real area of contact [17].

Surface roughness parameters include the distribution of asperity heights, material properties, contact load,
real contact area and the number of contact asperities [24]. Surface roughness has an appreciable influence on
adhesive friction. Majumdar and Bhushan [25] developed a fractal model for modeling roughness with
multiple length scales. The adhesional component of friction depends on the real area of contact and adhesion
shear strength. In the case of predominantly elastic contact, the adhesional component of the coefficient of
friction ma, for the fractal model [17,18], can be given by

ma ¼ ma0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðLs=LÞð1�DÞ=2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ls=ā

p L

LjW j

� �ðD�2Þ=2
, (3)

where ma0 is the coefficient of friction at macroscale (LXLjW j), L is the scan length which equals to nominal
contact length, LjW j is the long-wave length limit, ls is a material-specific characteristic length parameter, Ls is
a characteristic length parameter related to ls, ā is the mean contact radius, and D is a fractal dimension.

Bhushan [23] calculated ploughing component of the friction force for four models related to rigid asperities
or trapped wear particles, i.e. conical, spherical, and cylindrical with two orientations. The two-body
deformation component of the coefficient of friction at microscale can be given by

mds ¼

mds0
L

LjW j

� �1�D

conical shape;

mds0
L

LjW j

� �ð2�3DÞ=2

spherical shape;

8>>>><
>>>>:

(4)

where mds0 is the two-body deformation component of the coefficient of friction at macroscale (LXLjW j).
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In the presence of three-body deformation, the probability for a particle of a given size to be trapped at the
interface depends on the size of the region of contact [17,19]. Bhushan and Nosonovsky [19] considered a
square region of contact of two rough surfaces with a length L and the density of debris of Z particles per unit
area. The three-body deformation component of the coefficient of friction can be obtained as

mdp ¼ mdp0ntr
d̄
2

d̄
2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ld=d̄

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ld=d̄0

q , (5)

where ld is a material-specific characteristic length parameter, ntr is the number of trapped particles divided by
the total number of particles, d̄ is the mean particle diameter, d̄0 is the macroscale value of the mean particle
diameter, and the macroscale value of the three-body deformation component of the coefficient of friction
mdp0, with ntr ¼ 1 and L!1, is given by

mdp0 ¼ Z
L2

P

pd̄
2

0

4
tY0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ld=d̄0

q
, (6)

where tY0 is the macroscale value of shear yield strength.
Introducing two scale parameters c1 and c2 and combining Eq. (2) with Eqs. (3)–(5), the expression for the

total value of the coefficient of friction, for conical shape asperities, can be rewritten as

m ¼ ma0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðLs=LÞð2�DÞ=2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ls=ā

p L

LjW j

� �ðD�2Þ=2
þ c1

L

LjW j

� �1�D

þ c2C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ld=d̄

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðLs=LÞð2�DÞ=2

q
2
64

3
75, (7)

where c1 ¼ mds0=ma0, c2 ¼ mdp0=ma0, and C is a scale dependence parameter and can be given by

C ¼ C0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ls=ā

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðLs=LÞð2�DÞ=2

q L

LjW j

� �ðD�2Þ=2
, (8)

where C0 is the macroscale value of transition index.

2.2. Rub-impact forces

It is assumed that the heating effects due to friction can be ignored. Compared with one complete period of
rotating, the time during rub-impact is so short that the contact between the stator and rotor in the micro-
rotor system can be regarded as elastic impact. Under these assumptions, the rub-impact micro-rotor model is
illustrated in Fig. 1. As shown in Fig. 1, Fn is the radial impact force, Ft is the tangential rub force, f is the
inclination angle between the direction radius of the contact point and X-axis and o is the angular rotating
speed of the micro-rotor.

Many materials are known to show a dependence of the sliding velocity on the coefficient of friction. In
general, the coefficient of a monotonic sliding friction can be described by relative velocity Vrel and three
independent friction parameters [26], i.e.

mðV rel; m0;m1; aÞ ¼ m0 þ m1 expð�ajV reljÞ, (9)

where m0 governs the large relative velocity behavior, m1 controls the low velocity behavior, and a represents
the impact factor due to the relative velocity.

The most prominent friction model in the system dynamics is often assumed to be monotonically weakening
with increasing velocity and can be given by a simple velocity-dependent friction. For simplicity, the right-
hand side of Eq. (9) can be linearized by Taylor series about the steady sliding equilibrium and can be
simplified as

mn ¼ mþ aV n
rel, (10)

where n is the index of the relative velocity-dependent term.
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Fig. 1. Schematic diagram of the rub and impact forces between the rotor and stator.
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Assuming that the radial deformation of the stator is linear and the friction relationship between the rotor
and stator satisfies the above velocity-dependent friction laws with the scale effects. The rub and impact forces
can then be given by

Fn ¼ krðu� dÞ

F t ¼ mnFn
ðu4dÞ;

Fn ¼ 0

F t ¼ 0
ðupdÞ;

8>>>><
>>>>:

(11)

where u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2 þ Y 2

p
is the radial displacement of the rotor, kr is the radial stiffness of the stator, and d is an

initial clearance between the rotor and the stator. The rub and impact forces can be written in X�Y

coordinates as

F X

F Y

( )
¼
� cos j sin j

� sin j � cos j

" #
F n

F t

( )
¼

0

0

� �
ðupdÞ (12a)

and

FX

FY

( )
¼
� cos j sin j

� sin j � cos j

" #
Fn

F t

( )
¼ �

krðu� dÞ
u

1 �mn

mn 1

" #
X

Y

� �
ðu4dÞ. (12b)

2.3. The governing equations of motion

According to the rub and impact forces analyses and barycenter motion theorem, when the rotor rubs the
stator, the Jeffcott micro-rotor system can be described by the following differential equation of motion:

m

m

� � €X
€Y

( )
þ

c

c

� � _X
_Y

( )
þ

k

k

� �
X

Y

� �
¼

F X

F Y

( )
þmeo2

cos ot

sin ot

� �
, (13)

where _X ¼ dX=dt and _Y ¼ dY=dt, X and Y are the displacements of the axes centers of the micro-rotor in X

and Y directions, respectively, m is the mass of the rotor, c is the damping coefficient, k is the stiffness
coefficient and e is the imbalance.

The non-dimensional variables are defined as

t ¼ o0t; O ¼
o
o0
; x ¼

X

d
; y ¼

Y

d
; _x ¼

dx

dt
; o0 ¼

ffiffiffiffi
k

m

r
; r ¼

e

d
; u ¼

u

d
,

x ¼
c

2
ffiffiffiffiffiffiffi
mk
p ; b ¼

kr

k
. ð14Þ
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Eq. (13) can be further rewritten in the following non-dimensional form:

€xþ 2x _xþ xþ bð1� 1
uÞ½x� my� ao0dyð _x2 þ _y2Þ

n=2
� ¼ rO2 cos Ot

€yþ 2x _yþ yþ bð1� 1
uÞ½mxþ yþ ao0dxð _x2 þ _y2Þ

n=2
� ¼ rO2 sin Ot

8<
: ðu41Þ. (15)

Without rubbing against the stator, the governing equation of motion can be formulated as

€xþ 2x _xþ x ¼ rO2 cos Ot

€yþ 2x _yþ y ¼ rO2 sin Ot

(
ðup1Þ. (16)

3. Stability analysis

3.1. Stability of the solutions

During the process of micro-rotor is rotating at high speed, both Eqs. (15) and (16) have a steady-state
periodic solution. For simplicity, setting a ¼ 0 and assuming that the solution has the following form:

x ¼ A cosðOtþ jÞ;

y ¼ A sinðOtþ jÞ:

(
(17)

Due to the existence of the stator, the solution of Eq. (16) is eligible only when its amplitude A satisfies
Ap1. The parameter equation in the parameter space where the solution exists can then be given by

ðr2 � 1ÞO4 þ 2ð1� 2x2ÞO2 � 1p0. (18)

Provided that the other parameters are given, two real roots O1 and O2(O1oO2) can be derived by solving
Eq. (18). The steady-state periodic solutions of the micro-rotor system (16) will exist only between O1 and O2

in the parameter regions.
For the governing equation of motion (15), the amplitude of its steady-state periodic solution can be

obtained by substituting Eq. (17) into Eq. (15) and a polynomial of A can be given by

c2A2 þ c1Aþ c0 ¼ 0, (19)

where

c2 ¼ O4 þ ð4x2 � 2� 2bÞO2 þ 4xbmOþ ð1þ 2bþ b2 þ b2m2Þ;

c1 ¼ 2bO2 � 4xbmOþ ð�2b� 2b2 � 2b2m2Þ;

c0 ¼ �r2O4 þ b2 þ b2m2:

8><
>:

To get the boundary conditions where the solutions of Eq. (19) exist, Eq. (19) can be simplified with respect
to A and the saddle-node bifurcation condition can be obtained

c21 � 4c0c2 ¼ 0. (20)

From the physical viewpoint, A not only needs to be real and positive but also satisfies A41 to assure that
contact occurs between the rotor and stator.

To analyze the stability of the micro-rotor system with rub-impact, it is necessary to review the eigenvalue
issue of the governing equation of motion. Using the Laplace expansion formula, the associated characteristic
equation can be given by

l4 þ 4xl3 þ ð2þ 4x2Þl2 þ 4xlþ 1 ¼ 0. (21)

According to the Routh–Hurwitz conditions, stability determinant condition of the steady-state periodic
solution of Eq. (16) is

4x2 þ x40. (22)
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It is evident that condition (22) comes into existence at any condition (x40), i.e., the corresponding steady-
state periodic solutions are stable. However, the rotor will rub with the stator due to the existence of the stator
when the vibration amplitude is beyond the clearance.

When rub between the rotor and the stator happens, the motion of the micro-rotor system will then be
governed by Eq. (15), and it is non-autonomous system and cannot be used to determine the stability of the
system directly. Using the Laplace expansion formula of partitioned matrix, the associated characteristic
equation can be given by

b4l
4
þ b3l

3
þ b2l

2
þ b1lþ b0 ¼ 0, (23)

where

b4 ¼ 1;

b3 ¼ 4x;

b2 ¼ 2O2 þ 4x2 � 1
A
þ 4;

b1 ¼ 4xO2 þ 4m� 2
A
m

	 

Oþ 8x� 2

A
x;

b0 ¼ O4 þ 4x2 þ 1
A
� 4

	 

O2 þ 4mx� 2

A
mx

	 

Oþ m2 � 2

A
m2 � 2

A
þ 4

	 


8>>>>>>><
>>>>>>>:

and the values of these coefficients are functions of the amplitude A. From the viewpoint of the bifurcation
theory, it is interested and significative to determine the bifurcation boundaries of the solutions.

The micro-rotor system with rub-impact has linear and cross stiffness, nonlinear rub and impact forces. If
the partitioned matrix has one zero eigenvalue, the system will occur saddle-node bifurcation and the
condition corresponds to b0 ¼ 0 in Eq. (23), i.e.

b0 ¼ O4 þ 4x2 þ
1

A
� 4

� �
O2 þ 4mx�

2

A
mx

� �
Oþ m2 �

2

A
m2 �

2

A
þ 4

� �
¼ 0. (24)

For any amplitude A, the relationship between O and the other relative parameters can be obtained by
combining Eqs. (19) and (24). We can then determine the condition in the parameter space where the saddle-
node bifurcation of the steady-state periodic solutions of the micro-rotor system occurs.

From the Hopf bifurcation theorem, Hopf bifurcation of the solutions will appear if there is one pair
of conjugate purely imaginary eigenvalues. Assuming the eigenvalues satisfy l ¼ �o and substituting it into
Eq. (23) yields

b2
1 � b1b2b3 þ b0b

2
3 ¼ 0. (25)

Substituting b02b3 in Eq. (23) into Eq. (25) and combining Eqs. (19), (23) and (25), the polynomial of O,
which can be used to determine the Hopf bifurcation condition of the nonlinear solutions at parameter space,
can be obtained.

3.2. Effects of system parameters on micro-rotor responses

The effects of system parameters on rotor dynamical behavior as well as on rotor instability are investigated
in this section. Among many effect factors, the effects of several main system parameters, rotating speed,
imbalance, and damping and friction coefficients on micro-rotor responses in parameter place are analyzed
and discussed.

Figs. 2–4 display the micro-rotor response characteristics on the parameter plane of different system
parameter combinations among frequency ratio, imbalance, damping and friction coefficients. Fig. 2 shows
the micro-rotor response characteristics on the parameter plane of the damping coefficient z and frequency
ratio O for different imbalance. It is known from Eq. (22) that the linear periodic solution without rubbing of
the micro-rotor system is always stable. However, since the existence of the clearance between the rotor and
the stator, the solution cannot exist all over the parameter space. It can be seen from Eq. (18) that the
amplitude of the steady-state periodic solution A satisfies A! 1 at O ¼ O1 or O2 when the forcing frequency
approximates to the natural frequency of the micro-rotor, i.e., O approaches to 1, as illustrated in Fig. 2(a).
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Fig. 2. Micro-rotor response characteristics on the parameter plane of the damping coefficient z and frequency ratio O for different

imbalance: (a) e ¼ 3 mm and (b) e ¼ 2 mm.

Fig. 3. Micro-rotor system responses on the parameter plane of the friction coefficient m and frequency ratio O.
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It is derived from Eqs. (20) and (24) that the rub solutions exist between O1 and O2. The result indicates that
the region of rub solutions is determined by O1 and O2, and the disappearance of the rub solutions are not due
to the bifurcation but due to the variation of the amplitude of the micro-rotor response. It can be observed
from Fig. 2(a) that the periodic solutions of the micro-rotor system are stable in the region (1) and the dynamic
behavior of the micro-rotor is a periodic no-rub motion. When O satisfies O1oOoO2, the periodic solutions
of the micro-rotor system are unstable. From Hopf bifurcation condition (25), the Hopf bifurcation boundary
can be determined, i.e., the boundary of the regions (2) and (3). The boundary is of a parabolic shape and has
its highest point at O ¼ 1. Therefore, the unstable rub motions of the micro-rotor system can happen only in
region (2). The steady-state periodic solutions in region (3) indicate that the rub motions of the micro-rotor
system are stable and the stable motions like quasi-periodic ones. Moreover, the stability of the periodic
solution becomes more and more evident with the increase of damping coefficient. After reducing the
imbalance e (i.e., e ¼ 3 mm-e ¼ 2 mm), the region of the rub motion (2) keeps down, the stable boundaries
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Fig. 4. Micro-rotor response characteristics on the parameter plane of the clearance between the rotor and stator d and frequency ratio O
for different imbalance: (a) e ¼ 3 mm and (b) e ¼ 4mm.
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O ¼ O1 and O2 close to middle direction, and the Hopf bifurcation boundary moves downwards, as displayed
in Fig. 2(b). Therefore, the stable boundaries O ¼ O1 and O2 vary correspondingly with the change of system
parameters, and the rub motion will occur less with the decrease the imbalance.

As shown in Fig. 3, the periodic solutions of the micro-rotor system are stable in the parameter region (1) of
OoO1 ¼ 0:7635 and O4O2 ¼ 1:9802 and the dynamic behavior of the micro-rotor is a periodic no-rub
motion. When O1oOoO2, the rub motion of the micro-rotor system occurs and the steady-state periodic
solutions of the micro-rotor system are unstable. From Hopf bifurcation condition (25), the Hopf bifurcation
boundary can be obtained, namely, the boundary of the regions (2) and (3). The boundary is of a parabolic
shape and has its lowest point at O ¼ 1. Therefore, the unstable rub motions occur in the region (3) and the
rub solutions become more and more unstable for larger friction coefficients. The steady-state periodic
solutions in region (2) indicate that the rub motions of the micro-rotor system are stable and the stable
motions like quasi-periodic ones. When the friction coefficient increases, the unstable rub region of rub
motions (3) extends and the rub motion will occur.

Fig. 4 displays the micro-rotor response characteristics on the parameter plane of the clearance between the
rotor and stator d and frequency ratio O. As shown in Fig. 4(a), at O ¼ O2, the rotor response produces the
jump phenomena in the region (1) and the periodic solution of the rotor system is stable. When O1oOoO2,
the periodic solution of the micro-rotor system is unstable. From Hopf bifurcation condition (25), the Hopf
bifurcation boundary can be obtained, namely, the boundary of the regions (2) and (3). The boundary is of a
parabolic shape and has its highest point at O ¼ 1. Therefore, the rub motion occurs in the region (2) and the
steady-state periodic solutions are stable in the region (3), and this indicates that the rub motion is stable and
the motion maybe becomes quasi-periodic motion. With the increase of imbalance e (e ¼ 3 mm-e ¼ 4 mm),
the region of the unstable rub motion (2) changes significantly, the stable boundary O ¼ O2 jumps evidently
and expands outwards, and the Hopf bifurcation boundary moves upwards, as illustrated in Fig. 4(b).
Therefore, the micro-rotor responses on the parameter plane will produce unstable rub motion in certain
region around O ¼ 1 when the clearance d is less than certain fixed value, meantime, the possibility of the
unstable motion will reduce with the increase of d. Moreover, as the increase of the imbalance, the stable
boundaries O ¼ O1 and O2 vary correspondingly with the change of system parameters and the boundary
O ¼ O2 will jump when the imbalance becomes larger. It is indicated that the unstable rub motion will occur
less with the decrease of imbalance.

Tables 1 and 2 list some parts of the eigenvalues of the micro-rotor system with different system parameter
combinations. It can be seen from the results of these seven parameters combinations that the steady-state
periodic solutions exist stable and unstable and the stability changes with the different parameter
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Table 1

Different system parameter combinations and their descriptions

Parameter combination System parameter description

1 e ¼ 3mm, f ¼ 0.26, O ¼ 1.1, d ¼ 4 mm
2 e ¼ 3mm, f ¼ 0.26, O ¼ 2.1, d ¼ 4 mm
3 e ¼ 3mm, f ¼ 0.36, O ¼ 1.1, d ¼ 4 mm
4 e ¼ 1mm, f ¼ 0.36, O ¼ 1.1, d ¼ 4 mm
5 e ¼ 3mm, f ¼ 0.36, O ¼ 1.1, d ¼ 2 mm
6 e ¼ 3mm, f ¼ 0.36, O ¼ 3.1, d ¼ 3 mm
7 e ¼ 3mm, f ¼ 0.36, O ¼ 1.0, d ¼ 3 mm

Table 2

Characteristics of the rub-impact micro-rotor system with different system parameter combinations

No. Eigenvalue Conclusion

l1 l2 l3 l4

1 �0.0192+2.4579i �0.0192�2.4579i �0.1808+0.2487i �0.1808�0.2487i Stable

2 �0.0488+3.3178i �0.0488�3.3178i �0.1512+0.8704i �0.1512�0.8704i Stable

3 0.0272+2.4655i 0.0272�2.4655i �0.1986+0.2575i �0.1986�0.2575i Unstable

4 �0.0088+2.3491i �0.0088�2.3491i �0.3176 �0.0077 Stable

5 0.0345+2.4918i 0.0345�2.4918i �0.2059+0.2900i �0.2059�0.2900i Unstable

6 �0.0061+4.3469i �0.0061�4.3469i �0.1653+1.8508i �0.1653�1.8508i Stable

7 0.0328+2.3859i 0.0328�2.3859i �0.2043+0.3836i �0.2043�0.3836i Unstable
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combinations. Since the results listed in Table 2 can be related to Figs. 2–4, it is easy to judge the stability of
the steady-state periodic solutions and even the stability of the micro-rotor system and the stable region. For
example, for the third pair of system parameter combination (e ¼ 3 mm, f ¼ 0.36, O ¼ 1:1, d ¼ 4mm), the real
parts of the eigenvalues of the micro-rotor responses l1 and l2 are positive, this indicates that the periodic
solution is unstable and the micro-rotor system can come into rubbing. It can be seen from the above
qualitative analysis that the governing equation of motion has bifurcation for some system parameter
combinations. Therefore, the micro-rotor system will become unstable for some system parameter
combinations and may lead to chaos.

4. Results and discussions

4.1. Numerical simulations and results

Eq. (15) represents a nonlinear and non-autonomous system. When the rub-impact occurs, partial
derivatives of the nonlinear terms FX and FY do not exist due to the piecewise feature. However, the one-step
method to numerically integrate the initial value problem of the ordinary differential equation is convergent
when the Lipshitz condition is satisfied. Then the fourth-order Runge–Kutta method is used to integrate the
set of Eqs. (15) and (16). A smaller integration step (2p/200) has to be chosen to ensure a stable solution and to
avoid the numerical divergence at the point where derivatives of FX and FY are discontinuous. Generally, long
time-marching computation is needed to obtain a convergent orbit. For the sake of a strongly stable motion
and eliminating the effect of free vibration, a few hundred periods of integration have to be neglected, while a
few hundred periods of integration behind are retained.

To illustrate the dynamic behavior of the system, the bifurcation diagram, Poincaré maps, axes contrails,
phase plane portraits, time histories and amplitude spectrum are used. The parameter values used in the
calculation are as follows: the coefficient of dry friction due to elastic contact at macroscale ma0 ¼ 0:025, index
of the relative velocity-dependent term n ¼ 1.
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4.1.1. Effect of rotating speed

The rotating speed is one of the most important parameters affecting the dynamic characteristics of a micro-
rotor system. Fig. 5 shows the bifurcation diagram of the micro-rotor system using the rotating speed as the
control parameter with z ¼ 0:025 and r ¼ 0:5. It can be seen that the rotor responses contains periodic and
quasi-periodic motions alternately at the interval of 0oOo5. When Oo1:8, the vibration amplitude of the
micro-rotor is smaller, the rub phenomenon does not occur, the motion is synchronous with period-one (P-1),
and only one point is correspondingly displayed in the bifurcation diagram for every rotating speed. With the
increase of the rotating speed, rub does occur between the rotor and the stator. As O41:8, the motion
becomes quasi-periodic. Moreover, as the change of rotating speed continuously, the quasi-periodic motion
becomes synchronous with P-1 again when O ¼ 3:55. Therefore, as the rotating speed increases, the changes of
the system responses are very complex and mainly include periodic and quasi-periodic motions alternately.

When the scale effects in friction is considered, the bifurcation diagram of the micro-rotor system using the
rotating speed as the control parameter is displayed in Fig. 6 with z ¼ 0:025, r ¼ 0:5, Ls=LjW j ¼ 1,
L=LjW j ¼ 0:9, D ¼ 1.9, j1 ¼ 0:01, j2 ¼ 0:1 and a ¼ 0:5. It is obvious that the system response displays wider
quasi-periodic motion when O40:3. As the increase of the rotating speed, the system responses show
synchronous motions with P-1 and quasi-periodic motion, quasi-periodic motion components increase with
the scale effects in friction, and the quasi-periodic motions and synchronous periodic motions vary
alternatively. In addition, the more greatly the rotating speed increases, the wider the range of quasi-periodic
motion becomes and the larger the number of periodic motions appears.

To illustrate the various processes of motion, Figs. 7 and 8 show the nonlinear characteristics of the micro-
rotor system with the plots of the Poincaré maps and axes contrails at different conditions. The motion of the
micro-rotor system changes between P-1 and quasi-period alternately. The motion with P-1 represented by a
point with the Poincaré maps becomes quasi-periodic motion characterized by a closed curve at O ¼ 1:8 and
3:55, as illustrated in Fig. 7. In Fig. 8, the synchronous motion with P-1 and quasi-periodic motion changes
correspondingly for the same of O with the scale effect in friction. Moreover, the quasi-periodic motion
components and synchronous motions with period-X become obvious. It is indicated that the motion of the
micro-rotor displays periodic and quasi-periodic motions alternatively when the rotating speed is used as the
control parameter with the scale effects in friction.

4.1.2. Effect of imbalance

For micro-rotating machinery in MEMS, there exists bigger imbalance due to the IC process and assembly.
Imbalance is of great importance to the vibration of the micro-rotor system. During the operating process, a
practical micro-rotating machinery imbalance will be changed unavoidably due to the effects from different
Fig. 5. The bifurcation diagram of O on the response of rubbing micro-rotor system with z ¼ 0.025 and r ¼ 0.5.
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Fig. 6. The bifurcation diagram of O on the response of rubbing micro-rotor system with z ¼ 0.025, r ¼ 0.5, Ls=Ljwj ¼ 1, L=Ljwj ¼ 0:9,
D ¼ 1.9, j1 ¼ 0.01, j2 ¼ 0.1 and a ¼ 0.5.

Fig. 7. The Poincaré maps and axes contrails of different O on the responses of the rubbing micro-rotor system with z ¼ 0.025 and

r ¼ 0.5: (a) O ¼ 1.8; (b) O ¼ 3.0; (c) O ¼ 3.55; and (d) O ¼ 3.75.
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aspects. Therefore, it is valuable to investigate various dynamic characteristics of a rub-impact micro-rotor
system for diagnosing the rotor-to-stator rub fault by using imbalance as the control parameter in MEMS.

Fig. 9 illustrate the bifurcation diagram of r on the response of rubbing micro-rotor system with z ¼ 0:025
and O ¼ 4 and z ¼ 0:025, O ¼ 4, Ls=LjW j ¼ 1, L=LjW j ¼ 0:9, D ¼ 1:9, j1 ¼ 0:01, j2 ¼ 0:1 and a ¼ 0:5,
respectively. It can be observed that system responses exhibit the alternation of periodic, quasi-periodic and
chaotic motions at the interval of 0oro1:2. At ro0:18, the system responses mainly display steady-state
synchronous motion with P-1, the vibration amplitude of the micro-rotor is small and the rub phenomenon
generally does not occur, as displayed in Fig. 9(a). As the imbalance increases, the vibration amplitude of the
micro-rotor becomes bigger and the rub phenomenon occurs between the rotor and stator. When r40:82, the
system response comes into chaotic motion and exhibits a wider range of chaotic motion as the control
parameters vary. It is indicated that the changes of system responses are very complex as the imbalance varies
and the motion displays alternation between periodic, quasi-periodic and chaotic motions. When the scale
effects in friction are considered for a small ratio Ls=LjW j ¼ 1, scale length L=LjW j ¼ 0:9 and fractal dimension
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Fig. 8. The Poincaré maps and axes contrails of different O on the responses of the rubbing micro-rotor system with z ¼ 0.025, r ¼ 0.5,

Ls=Ljwj ¼ 1, L=Ljwj ¼ 0:9, D ¼ 1.9, j1 ¼ 0.01, j2 ¼ 0.1 and a ¼ 0.5: (a) O ¼ 1.8; (b) O ¼ 3.0; (c) O ¼ 3.55; and (d) O ¼ 3.75.

Fig. 9. The bifurcation diagram of r on the response of rubbing micro-rotor system: (a) z ¼ 0.025 and O ¼ 4; (b) z ¼ 0.025, O ¼ 4,

Ls=Ljwj ¼ 1, L=Ljwj ¼ 0:9, D ¼ 1.9, j1 ¼ 0.01, j2 ¼ 0.1 and a ¼ 0.5.
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D ¼ 1:9, the system response appears quasi-periodic motion from synchronous motion with P-1 at ro0:18,
the ranges of quasi-periodic and chaotic motions become wider, as shown in Fig. 9(b).

Fig. 10 illustrate the Poincaré maps, axes contrails, phase plane portraits and time histories on the responses
of the rubbing micro-rotor system for different r. It can be seen that the system response comes into periodic
motion from quasi-periodic motion, then leaves quasi-periodic motion and enters chaotic motion, and finally
turns into quasi-periodic motion from chaotic motion. At r ¼ 0:12, the Poincaré map has a closed curve and
the axes contrails and phase plane portraits are regular and the corresponding Lyapunov exponent is zero. All
of these prove that the motion is quasi-periodic. The system response change correspondingly with the
increase of imbalance. At r ¼ 0:49, the Poincaré map, axes contrails and phase plane portraits indicate
that the motion of the micro-rotor system is periodic. At r ¼ 0:90, the Poincaré map appears strange
attractor and axes contrail and phase plane portrait show irregular distributions. All of these indicate that the
response of the system enters chaotic motion from periodic motion. It can be observed from the Poincaré map
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Fig. 10. The Poincaré maps, axes contrails, phase plane portraits and time histories of different r on the responses of the rubbing micro-

rotor system with z ¼ 0.025, O ¼ 4, Ls=Ljwj ¼ 1, L=Ljwj ¼ 0:9, D ¼ 1.9, j1 ¼ 0.01, j2 ¼ 0.1 and a ¼ 0.5: (a) r ¼ 0.12; (b) r ¼ 0.49;

(c) r ¼ 0.90; and (d) r ¼ 1.20.
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(see Fig. 10(a)–(d)) that the responses of the micro-rotor system alternate among the periodic, quasi-periodic
and chaotic motions. At the same time, the time histories have corresponding changes.

4.1.3. Effect of damping coefficient

From the viewpoint of physics, the Jeffcott micro-rotor system is a dissipation system due to the existence of
damping. For chaotic vibration it can be seen later that as the damping increases the amplitude of vibration
becomes smaller. The system parameters for the computation are as follows: rotating speed O ¼ 5, scale
parameters j1 ¼ 0:01 and j2 ¼ 0:1, impact factor a ¼ 0:5, integration step numbers N ¼ 200and bifurcation
step Dz ¼ 0:005.

Fig. 11 is the bifurcation diagram of z on the response of the rubbing micro-rotor system at the interval of
0:02ozo0:06 for different combinations of scale length parameters and fractal dimensions. The response of
the micro-rotor system undergoes a complete process from quasi-periodic motion through chaotic and
periodic motions to P-1 motion. In Fig. 11(a) and (b), as the fractal dimension D increases from 1.1 to 1.9, the
components of quasi-periodic and chaotic motions decrease and the components of synchronous motion with
P-1 increase at high damping coefficients. With the decrease of scale length L=LjW j from 0.9 to 0.6, the range
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Fig. 11. The bifurcation diagram of z on the response of rubbing micro-rotor system with r ¼ 0.5, O ¼ 5, j1 ¼ 0.01, j2 ¼ 0.1 and a ¼ 0.5:

(a) Ls=Ljwj ¼ 1, L=Ljwj ¼ 0:9, D ¼ 1.1; (b) Ls=Ljwj ¼ 1, L=Ljwj ¼ 0:9, D ¼ 1.9; (c) Ls=Ljwj ¼ 1000, L=Ljwj ¼ 0:6, D ¼ 1.9; and (d)

Ls=Ljwj ¼ 1000, L=Ljwj ¼ 0:9, D ¼ 1.9.

Fig. 12. The Poincaré maps and axes contrails of different z on the responses of the rubbing micro-rotor system with r ¼ 0.5, z ¼ 0.025,

O ¼ 5, Ls=Ljwj ¼ 1, L=Ljwj ¼ 0:9, D ¼ 1.9, j1 ¼ 0.01, j2 ¼ 0.1 and a ¼ 0.5: (a) z ¼ 0.025; (b) z ¼ 0:045; and (c) z ¼ 0:055.
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of quasi-periodic and chaotic motions become little wider, as shown in Fig. 11(b) and (c). When the scale ratio
Ls=LjW j changes from 1 to 1000, the components of quasi-periodic and chaotic motions are replaced by
periodic-one motions at high damping coefficients, as illustrated in Fig. 11(b) and (d).

The Poincaré maps and axes contrails for different damping coefficients are shown in Fig. 12. When the
damping coefficient is small, i.e. z ¼ 0:025, the exhibited motion is quasi-periodic motion and its attractor is a
closed curve. As the damping coefficient becomes larger, the closed form of the attractor is decomposed and
the points in the Poincaré map gradually scatters. At z ¼ 0:045, the motion becomes a chaotic motion. After
that the points of the attractor are decomposed again and finally converge to one point. When z ¼ 0:055, a
synchronous motion with P-1 can be observed.

It can be seen that when the damping coefficient is used as the control parameter the motion changes from
quasi-periodic motion through chaotic motion and periodic motion to synchronous motion with P-1.
Therefore, the existence of damping has a certain effect on dynamic characteristics of the micro-rotor system.
It is indicated that increasing damping can effectively suppress chaotic vibration.
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4.1.4. Effect of fractal dimension

When a surface is magnified as an image looked very similar to the original surface, which is known as self-
similarity in a fractal model [17,25]. The fractal model describes the surface profile as a self-similar structure,
which is characterized by a fractal dimension and a scale coefficient. The fractal dimension is both scale
invariant and is closely related to self-similarity.

To elucidate the physical significance of the fractal dimension on the surface topography in MEMS, the
profiles of two rough surfaces are simulated and displayed in Fig. 13. From Eq. (8), a random surface profile
cannot be simulated at x ¼ 0 because the phases coincide at all frequencies. Thus, in the present analysis the
portion of the simulated profile in the range LsoxoL, where Ls ¼ 100 nm and L ¼ 1100 nm, was used to
model the real sample surface in x direction. Since g determines the density of the spectrum, a choice of g ¼ 1.5
provides both the phase randomization and high spectral density. Fig. 13 shows that a smoother topography
can be observed with a larger value of the fractal dimension D for fixed fractal roughness parameter G.

Fig. 14 is the bifurcation diagram of the micro-rotor system using the fractal dimension D as the control
parameter with r ¼ 0:5, z ¼ 0:04, O ¼ 4, L=LjW j ¼ 0:6, j1 ¼ 0:01, j2 ¼ 0:1, a ¼ 0:5, and bifurcation step
DD ¼ 0:01 for different scale ratios. Fig. 14(a) shows the bifurcation diagram when the fractal dimension D is
used as the control parameter at Ls=LjW j ¼ 0. A complete process from quasi-periodic motion to synchronous
motion with P-1 can be seen at the interval of 1:1oDo1:9. As the scale ratio becomes larger from Ls=LjW j ¼ 0
to Ls=LjW j ¼ 1, the bifurcation diagram is plotted in Fig. 14(b). It can be observed that the region of the
synchronous motion with P-1 disappears while that of the quasi-periodic motion becomes wider as the scale
ratio increases. Moreover, periodic motions appear at some fractal dimensions, such as the motion with
period-nine (P-9) at D ¼ 1:39.

Fig. 15 illustrates the Poincaré map, axes contrail, phase plane portrait and time history on the responses of
the rubbing micro-rotor system for D ¼ 1:2. It can be seen that the Poincaré map has a closed curve and the
axes contrails and phase plane portraits are regular in system response and the corresponding Lyapunov
exponent is zero. All of these prove that the motion is quasi-periodic.

4.1.5. Effect of scale length

The change of scale length affects the coefficient of friction and result in the responses of the rubbing micro-
rotor system being varied. Fig. 16 is the bifurcation diagram of L=LjW j on the response of the rubbing micro-
rotor system at the interval of 0:1oL=LjW jo1 for various combinations of Ls=LjW j and D. It can be observed
that the response of the micro-rotor system has a complete process from quasi-periodic motion through
Fig. 13. Simulation of two-dimensional fractal surface profiles with G ¼ 1� 10�11 m: (a) D ¼ 1.2; and (b) D ¼ 1.6.
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Fig. 14. The bifurcation diagram of D on the response of rubbing micro-rotor system with r ¼ 0.5, z ¼ 0:04, O ¼ 4, L=Ljwj ¼ 0:6,
j1 ¼ 0.01, j2 ¼ 0.1 and a ¼ 0.5: (a) Ls=Ljwj ¼ 0; and (b) Ls=Ljwj ¼ 1.

Fig. 15. The Poincaré map, axes contrail, phase plane portrait and time history on the responses of the rubbing micro-rotor system with

D ¼ 1.2 and Ls=Ljwj ¼ 0.
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periodic motions to P-1 or quasi-periodic motion. As the fractal dimension D increases from 1.1 to 1.6, the
components of quasi-periodic motion decrease and the components of synchronous motion with P-1 increase
at high fractal dimension, as shown in Fig. 16(a) and (b). In Fig. 16(c), with the increase of scale ratio Ls=LjW j
from 0 to 1, the range of quasi-periodic motion becomes wider and the motion with P-1 disappears. When the
scale ratio Ls=LjW j decreases from 1 to 0.1 and the fractal dimension D increases from 1.6 to 1.9
simultaneously, the components of quasi-periodic and periodic motions are changed alternately and the
ranges of them become wider, as illustrated in Fig. 16(d). It is indicated that the possibility of rub becomes
more and more obvious as the increase of the friction coefficient at lower scale length.

4.2. Discussions

Advances of MEMS technology make understanding of scale effects in friction especially important and
microscale and nanoscale measurements demonstrate the scale dependence of friction as well as mechanical
properties [17–19]. Bhushan and Kulkarni [27] used an atomic force microscope (AFM) to measure the
friction of a Si3N4 tip compared to those for Si, SiO2, and natural diamond and obtained that the coefficient of
friction depends on the applied load and scale effects. Bhushan et al. [17–19,27] reported that the coefficient of
friction measured for Si(1 0 0) DLC, Z-DOL, and HDT at microscale in dry and wet environments are scale
dependent. In the case of elastic contact, the coefficient of friction decreases with decreasing scale, while it may
increase or decrease with scale for the case of plastic contact. It is noted that the critical value of loads for Si
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Fig. 16. The bifurcation diagram of L=Ljwj on the response of rubbing micro-rotor system with r ¼ 0.5, z ¼ 0:04, O ¼ 4, f1 ¼ 0.01,

f2 ¼ 0.1 and a ¼ 0.5: (a) Ls=Ljwj ¼ 0, D ¼ 1.1; (b) Ls=Ljwj ¼ 0, D ¼ 1.6; (c) Ls=Ljwj ¼ 1, D ¼ 1.6; and (d) Ls=Ljwj ¼ 1, D ¼ 1.9.
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and SiO2 corresponds to stresses equal to their hardness values, which suggests that the transition to plasticity
plays a role in this effect [18]. During transition from elastic to plastic regime, three components of the
coefficient friction in Eq. (7) will change. In the elastic regime, the dominant contribution is expected to be
adhesion involving elastic deformation, and in the plastic regime the dominant contribution is expected to
be deformation [19]. Moreover, deformation component of friction can be reduced by reducing surface
roughness, selecting materials of more or less equal hardness and removing wear and contaminant particles
from the interface [23]. Therefore, further modeling should be considered to study the transition effect and the
scale effects in friction should be taken into account for investigating the dynamic characteristics of micro-
rotating machinery in MEMS.

When two bodies come into contact, the contact occurs only on high asperities or summits, and the real
area of contact is a small fraction the apparent area of contact. Multiple asperities of two rough surfaces in
contact have irregular shapes and two of them, including conical and spherical shapes, have been studied
comparatively. The scale dependence for the two-body deformation component of the coefficient of friction in
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Fig. 17. Normalized component of the coefficient of dry friction due to two-body deformation for the fractal roughness with fractal

dimension D ¼ 1.1 and 1.9.
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Eq. (4) is displayed in Fig. 17 for conical and spherical shape asperities with two values of the fractal
dimension D ¼ 1:1 and 1:9. It is observed that the coefficients of friction increase with decreasing scale and
they are larger for spherical shape asperity than those for conical shape asperity.

In our previous work [22] and above several sections, the radial stiffness of the stator is supposed to be
linear and the radial rub-impact force between the rotor and stator is assumed to be in direct proportion to the
radial displacement at the contact point. To a certain extent, the results give a qualitative explanation of some
rotor rubbing phenomena, but cannot explain the rich high frequency components and non-periodical
motions existed in rotor responses. Results from the investigations on elastic contact issues in micro-rotating
machinery indicate that the relationship between the force and displacement of two relative sliding bodies in
contact is nonlinear and it relates with the shape of contact surfaces and material parameters of contact bodies
[11–14]. The surfaces of the rotor and stator are rough and have large numbers of asperities. Since the heights
of the asperities are different and the distributions of them are stochastic, the contact points between the stator
and rotor under the applied loads. At the beginning, only a few asperities come into contact, then the number
of contact asperities increases with the increase of applied load. The previous contact asperities come into
elastic deformation on high summits with the increase of applied load, and the plastic deformation will take
place when the contact stress is beyond the stress yield. Therefore, the asperities at the interface of the rotor
and stator take place deformation, either elastic deformation or plastic deformation. The relationship between
the stress and strain of elastic deformation is linear, but that of plastic deformation is nonlinear. Considering
these characteristics, the relationship between the normal contact force and displace of the stator and rotor
can be supposed by

FN ¼ krðu� dÞq=r, (26)

where q, r can be chosen as 1, 2, 3, y in terms of contact forms.
Fig. 18 displays the bifurcation diagram of the micro-rotor system using the rotating speed as the control

parameter with r ¼ 0:5, z ¼ 0:04, Ls=LjW j ¼ 1, L=LjW j ¼ 0:9, D ¼ 1:9, j1 ¼ 0:01, j2 ¼ 0:1, a ¼ 0:5, q ¼ 2 and
r ¼ 1. It can be seen that the rotor responses contains synchronous motion with P-1 and quasi-periodic motion
at the interval of 0oOo5. When Oo3:45, the vibration amplitude of the micro-rotor is smaller, the rub
phenomenon does not occur, the motion is synchronous motion with P-1, and only one point is
correspondingly shown in the bifurcation diagram for every rotating speed. With the increase of the rotating
speed, rub does occur between the rotor and the stator. As O43:45, the motion becomes quasi-periodic.
Moreover, with the increase of damping coefficient and the addition of plastic contact term, the components
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Fig. 18. The bifurcation diagram of O on the response of rubbing micro-rotor system with r ¼ 0.5, z ¼ 0:04, Ls=Ljwj ¼ 1, L=Ljwj ¼ 0:9,
D ¼ 1.9, j1 ¼ 0.01, j2 ¼ 0.1, a ¼ 0.5, q ¼ 2 and r ¼ 1.

Fig. 19. The bifurcation diagram of q=r on the response of rubbing micro-rotor system with r ¼ 0.5, z ¼ 0:04, O ¼ 4, Ls=Ljwj ¼ 1,

L=Ljwj ¼ 0:9, D ¼ 1.9, j1 ¼ 0.01, j2 ¼ 0.1 and a ¼ 0.5.
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of synchronous motions with P-1 increase and the quasi-periodic motions become wider compared with Fig. 6.
Therefore, as the rotating speed increases, the changes of the system responses are very complex and mainly
include periodic and quasi-periodic motions alternately.

Fig. 19 shows the bifurcation diagram of q=r on the response of rubbing micro-rotor system with r ¼ 0:5,
z ¼ 0:04, O ¼ 4, Ls=LjW j ¼ 1, L=LjW j ¼ 0:9, D ¼ 1:9, j1 ¼ 0:01, j2 ¼ 0:1 and a ¼ 0:5. It can be observed that
the system response comes into chaotic motion from quasi-periodic motion, then leaves chaotic motion and
enters quasi-periodic motion, and finally turns into P-1 motion. The Poincaré maps and axes contrails are
displayed in Fig. 20 for different q=r. When q=r ¼ 0:15, the Poincaré map appears strange attractor and the
axes contrail has irregular distributions. All of these figures show that the system response enters into chaotic
motion from periodic motion. At q=r ¼ 1 and q=r ¼ 2, the Poincaré maps have closed curves and the axes
contrails are regular, the exhibited motions are quasi-periodic. As the value of q=r increases, a synchronous
motion with P-1 can be seen at q=r ¼ 4. The results indicate that the components of system responses show
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Fig. 20. The Poincaré maps and axes contrails of various q/r on the responses of the rubbing micro-rotor system with r ¼ 0.5, z ¼ 0:04,
O ¼ 4, Ls=Ljwj ¼ 1, L=Ljwj ¼ 0:9, D ¼ 1.9, j1 ¼ 0.01, j2 ¼ 0.1 and a ¼ 0.5: (a) q/r ¼ 0.15; (b) q/r ¼ 1; (c) q/r ¼ 2; and (d) q/r ¼ 4.
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quasi-periodic and chaotic motions for q=ro1, while they display quasi-periodic motions and synchronous
motions with P-1 for q=r41.

5. Conclusions

Since there is a large surface-to-volume ratio, friction force becomes serious tribological concerns that limit
the life and reliability of MEMS devices. The stability of the rub solutions of a nonlinear Jeffcott micro-rotor
system are analyzed. The results make it possible to get the boundaries of different micro-rotor response
characteristics in the parameter space. The effects of the system parameter combinations on the dynamic
behaviors are investigated according to the analytical stability conditions. The stable boundaries vary
correspondingly to the change of system parameters, and the rub motion will occur less with the decrease of
the imbalance or friction coefficient. The increase of damping can control the occurrence of the rub motion. It
is observed that the unstable rub motion will occur less with the decrease of imbalance.

Nonlinear characteristics of a rub-impact micro-rotor system with the scale effects in friction in MEMS
have been investigated to unveil the global dynamic behavior. Both the qualitative theoretical analysis and
quantitative numerical simulation demonstrate that the nonlinear rub-impact caused by the rotating speed,
rotor imbalance, damping coefficient, scale length, fractal dimension and nonlinear rub-impact force makes
the dynamic characteristics of the micro-rotor system alternate among stable periodic, quasi-periodic and
chaotic states. It is clear that micro-tribology is an important factor affecting the performance and reliability
of micro-rotating machinery in MEMS. There is a need to develop a fundamental understanding of contact,
friction, wear phenomena on the scale pertinent to MEMS/NEMS and to understand the role of surface
contamination and environment in micro-rotating machinery. Furthermore, it is necessary to develop
lubricants and identify lubrication methods that are suitable for MEMS-based rotating machinery. Future
work should include the development of models of rough surface topography and the effects of distributions
of asperity heights and shapes, asperity coupling, scale-dependent plasticity, transition from the elastic to
plastic regime, interface temperature and experiments to validate the models.
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